ST. JOSEPH'S EVENING COLLEGE (AUTONOMOUS)

II SEMESTER BCA EXAMINATIONS - APRIL 2019

OPERATIONS RESEARCH

Duration: 2.5 Hours

SECTION - A

I) Answer any SIX of the following questions.

· · · · ·

Max. Marks: 70

(6x3=18)

(4x8=32)

1. Find the basic feasible solution by NWCR method to the following transportation problem.

	PLAYER B					
		B ₁	B ₂	B ₃	Avaliability	
PLAYER A	A_1	6	5	9	400	
	A_2	3	3	2	500	
	Requirement	300	400	200	900	

- 2. What is Linear Programming problem?
- 3. Explain MODI method to find optimal solution.
- 4. Define and write the scope of Operations Research.
- 5. Explain fair game.
- 6. Explain the basic concept of network and rules for drawing network diagram.
- 7. Explain critical path.
- 8. What do you mean by saddle point? When do you say that a game has saddle point?

SECTION - B

II) Answer any FOUR of the following questions.

9. Solve the following linear programing problem by using simplex method Maximize Z= 12x+16y subject to $10x+20y \le 120$; $8x+8y \le 80$; $x,y \ge 0$.

10. Determine an initial basic feasible solution by least cost entry method

	То					
		D ₁	D_2	D_3	Supply	
	O 1	2	7	4	5	
From	O2	3	3	1	8	
	O ₃	5	4	7	7	
	O4	1	6	2	14	
	Demand	7	9	18	34	

11. Solve the following by Hungarian method that the operating time is minimum.

	OPERATOR					
		Α	В	С	D	Ε
	Α	9	11	14	11	7
JOB	В	6	15	13	13	10
	С	12	13	6	8	8
	D	11	9	10	12	9
	Ε	7	12	14	10	14

- 12. Two players A and B match coins. If the coins match, then A gets Rs 5 from B and if the coins do not match B gets Rs 10 from A write the pay-off matrix and then solve the game.
- 13. Explain Events in the PERT and CPM network.
- 14. Find the solution of the game by the principle of dominance for the following

	PLAYER B					
		B ₁	B ₂	B ₃	B ₄	
PLAYER	A_1	-7	0	3	-5	
Α	A_2	7	-2	0	-4	
	A_3	-2	-1	-2	0	
	A_4	4	2	3	6	

SECTION - C

III) Answer any TWO of the following questions. (2x10=20)

- 15. Solve the following LPP graphically Maximize Z= 3x+10ySubject to $x+y \le 4$; $2x+y \le 6$; $x,y \ge 0$
- 16. The following details are available regarding a project. Determine the earliest and latest times, the total float for each activities, the critical activities and the project completion time.

Activity	Predecessor Activity	Duration (weeks)
А	-	12
В	А	7
С	А	11
D	А	8
Е	А	6
F	В	10
G	С	9
Н	D, F	14
Ι	E, G	13
J	H, I	16

17. Use Vogel's approximation method to find the initial basic feasible solution to the transportation problem using the following data.

	D ₁	D_2	D ₃	D_4	Supply
S_1	2	3	11	7	6
S ₂	1	0	6	1	1
S ₃	5	8	15	9	10
Demand	7	5	3	2	17